Publications
- Ghelasi, Paul; Ziel, Florian: From day-ahead to mid and long-term horizons with econometric electricity price forecasting models. In: Renewable and Sustainable Energy Reviews, Vol217 (2025), p. 115684. doi:10.1016/j.rser.2025.115684DetailsFull textCitation
- Zimmermann, Monika; Ziel, Florian: Efficient mid-term forecasting of hourly electricity load using generalized additive models. In: Applied Energy (2025). doi:10.1016/j.apenergy.2025.125444DetailsFull textCitation
- Berrisch, Jonathan: rcpptimer: Rcpp Tic-Toc Timer with OpenMP Support. In: arXiv preprint arXiv:2501.15856 (2025). DetailsCitation
- Uniejewski, Bartosz; Ziel, Florian: Probabilistic Forecasts of Load, Solar and Wind for Electricity Price Forecasting. In: arXiv preprint arXiv:2501.06180 (2025). DetailsCitation
- Ghelasi, Paul; Ziel, Florian: A data-driven merit order: Learning a fundamental electricity price model. In: arXiv preprint arXiv:2501.02963 (2025). DetailsCitation
- Alvisi, S; Franchini, M; Marsili, V; Mazzoni, F; Salomons, E; Housh, M; Abokifa, A; Arsova, K; Ayyash, F; Bae, H; Others; Kley-Holsteg, Jens; Others; Sonnenschein, Björn; Others; Ziel, Florian; Zou, J.: Battle of Water Demand Forecasting. In: Journal of Water Resources Planning and Management, Vol151 (2025), p. 4025049. DetailsCitation
- Berrisch, Jonathan; Ziel, Florian: Multivariate probabilistic CRPS learning with an application to day-ahead electricity prices. In: International Journal of Forecasting (2024). doi:10.1016/j.ijforecast.2024.01.005AbstractDetailsFull textCitation
This paper presents a new method for combining (or aggregating or ensembling) multivariate probabilistic forecasts, considering dependencies between quantiles and marginals through a smoothing procedure that allows for online learning. We discuss two smoothing methods: dimensionality reduction using Basis matrices and penalized smoothing. The new online learning algorithm generalizes the standard CRPS learning framework into multivariate dimensions. It is based on Bernstein Online Aggregation (BOA) and yields optimal asymptotic learning properties. The procedure uses horizontal aggregation, i.e., aggregation across quantiles. We provide an in-depth discussion on possible extensions of the algorithm and several nested cases related to the existing literature on online forecast combination. We apply the proposed methodology to forecasting day-ahead electricity prices, which are 24-dimensional distributional forecasts. The proposed method yields significant improvements over uniform combination in terms of continuous ranked probability score (CRPS). We discuss the temporal evolution of the weights and hyperparameters and present the results of reduced versions of the preferred model. A fast C++implementation of the proposed algorithm is provided in the open-source R-Package profoc on CRAN.
- Hirsch, Simon; Ziel, Florian: Multivariate simulation-based forecasting for intraday power markets: Modeling cross-product price effects. In: Applied Stochastic Models in Business and Industry (2024). doi:10.1002/asmb.2837DetailsFull textCitation
- Ghelasi, Paul; Ziel, Florian: Far beyond day-ahead with econometric models for electricity price forecasting. In: arXiv preprint arXiv:2406.00326 (2024). DetailsCitation
- Alberizzi, Andrea; Di Barba, Paolo; Ziel, Florian: Agent based modeling for intraday electricity markets. In: OPSEARCH (2024), p. 1-20. DetailsCitation
- Peper, Jan; Kröger, David; Kipp, Jonathan; Ziel, Florian; Rehtanz, Christian: Assessing the impact of weather-induced uncertainties in large-scale electricity systems. In: arXiv preprint arXiv:2405.19845 (2024). DetailsCitation
- Hirsch, Simon; Berrisch, Jonathan; Ziel, Florian: Online distributional regression. In: arXiv preprint arXiv:2407.08750 (2024). DetailsCitation
- Ghelasi, Paul; Ziel, Florian: From day-ahead to mid and long-term horizons with econometric electricity price forecasting models. In: arXiv preprint arXiv:2406.00326 (2024). DetailsCitation
- Zimmermann, Monika; Ziel, Florian: Spatial weather, socio-economic and political risks in probabilistic load forecasting. In: arXiv preprint arXiv:2408.00507 (2024). DetailsCitation
- Kley-Holsteg, Jens; Sonnenschein, Björn; Johnen, Gregor; Ziel, Florian: Water Demand Forecasting Based on Online Aggregation for District Meter Areas-Specific Adaption. In: Engineering Proceedings, Vol69 (2024), p. 15. DetailsCitation
- Johnen, Gregor; Kley-Holsteg, Jens; Niemann, André; Ziel, Florian: Optimising Water Supply--Application of Probabilistic Deep Neural Networks to. In: AI in Business and Economics (2024), p. 243. DetailsCitation
- Sonnenschein, Björn; Ziel, Florian: Probabilistic Intraday Wastewater Treatment Plant Inflow Forecast Utilizing Rain Forecast Data and Sewer Network Sensor Data. In: Water Resources Research (2023). doi:10.1029/2022WR033826DetailsCitation
- Marcjasz, Grzegorz; Narajewski, Michał; Weron, Rafał; Ziel, Florian: Distributional neural networks for electricity price forecasting. In: Energy Economics (2023). doi:10.1016/j.eneco.2023.106843DetailsCitation
- Sgarlato, Raffaele; Ziel, Florian: The Role of Weather Predictions in Electricity Price Forecasting Beyond the Day-Ahead Horizon. In: IEEE Transactions on Power Systems, Vol38 (2023), No 3, p. 2500-2511. doi:10.1109/TPWRS.2022.3180119DetailsCitation
- Hirsch, Simon; Ziel, Florian: Simulation-based Forecasting for Intraday Power Markets: Modelling Fundamental Drivers for Location, Shape and Scale of the Price Distribution. In: The Energy Journal (2023). doi:10.5547/01956574.45.3.shirDetailsCitation
- Berrisch, Jonathan; Ziel, Florian: CRPS learning. In: Journal of Econometrics, Vol237 (2023), p. 105221. doi:10.1016/j.jeconom.2021.11.008AbstractDetailsFull textCitation
Combination and aggregation techniques can significantly improve forecast accuracy. This also holds for probabilistic forecasting methods where predictive distributions are combined. There are several time-varying and adaptive weighting schemes such as Bayesian model averaging (BMA). However, the quality of different forecasts may vary not only over time but also within the distribution. For example, some distribution forecasts may be more accurate in the center of the distributions, while others are better at predicting the tails. Therefore, we introduce a new weighting method that considers the differences in performance over time and within the distribution. We discuss pointwise combination algorithms based on aggregation across quantiles that optimize with respect to the continuous ranked probability score (CRPS). After analyzing the theoretical properties of pointwise CRPS learning, we discuss B- and P-Spline-based estimation techniques for batch and online learning, based on quantile regression and prediction with expert advice. We prove that the proposed fully adaptive Bernstein online aggregation (BOA) method for pointwise CRPS online learning has optimal convergence properties. They are confirmed in simulations and a probabilistic forecasting study for European emission allowance (EUA) prices.
- Berrisch, Jonathan; Narajewski, Michał; Ziel, Florian: High-resolution peak demand estimation using generalized additive models and deep neural networks. In: Energy and AI, Vol13 (2023), p. 100236. doi:10.1016/j.egyai.2023.100236DetailsFull textCitation
- Berrisch, Jonathan; Pappert, Sven; Ziel, Florian; Arsova, Antonia: Modeling volatility and dependence of European carbon and energy prices. In: Finance Research Letters, Vol52 (2023), p. 103503. doi:10.1016/j.frl.2022.103503DetailsFull textCitation
- Ghelasi, Paul; Ziel, Florian: Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions. In: International Journal of Forecasting (2022). doi:10.1016/j.ijforecast.2022.11.004DetailsCitation
- Finnah, Benedikt; Gönsch, Jochen; Ziel, Florian: Integrated day-ahead and intraday self-schedule bidding for energy storage systems using approximate dynamic programming. In: European Journal of Operations Research, Vol301 (2022), No 2, p. 726-746. DetailsCitation
- Narajewski, Michal: Probabilistic Forecasting of German Electricity Imbalance Prices. In: Energies, Vol15 (2022), No 14. doi:10.3390/en15144976DetailsCitation
- Narajewski, Michal; Ziel, Florian: Optimal bidding in hourly and quarter-hourly electricity price auctions: Trading large volumes of power with market impact and transaction costs. In: Energy Economics, Vol110 (2022). doi:10.1016/j.eneco.2022.105974DetailsCitation
- Berrisch, Jonathan; Ziel, Florian: Distributional modeling and forecasting of natural gas prices. In: Journal of Forecasting, Vol41 (2022), p. 1065-1086. doi:10.1002/for.2853DetailsFull textCitation
- Ziel, Florian: Smoothed bernstein online aggregation for short-term load forecasting in ieee dataport competition on day-ahead electricity demand forecasting: Post-covid paradigm. In: IEEE Open Access Journal of Power and Energy, Vol9 (2022), p. 202-212. DetailsCitation
- Petropoulos, Fotios; Apiletti, Daniele; Assimakopoulos, Vassilios; Babai, Mohamed Zied; Barrow, Devon K.; Taieb, Souhaib Ben; Bergmeir, Christoph; . . .; Winkler, Robert L.; Yusupova, Alisa; Ziel, Florian: Forecasting: theory and practice. In: International Journal of Forecasting (2021). DetailsCitation
- Ziel, Florian: M5 Competition Uncertainty: Overdispersion, distributional forecasting, GAMLSS and beyond.. In: International Journal of Forecasting (2021). doi:10.1016/j.ijforecast.2021.09.008DetailsCitation
- Gonzalez, Paula; Brayshaw, David; Ziel, Florian: A new approach to subseasonal multi-model forecasting: Online prediction with expert advice.. In: Quarterly Journal of the Royal Meteorological Society (2021). doi:10.1002/qj.4177DetailsCitation
- Rostami-Tabar, Bahman; Ziel, Florian: Anticipating special events in Emergency Department forecasting. In: International Journal of Forecasting (2021). doi:10.1016/j.ijforecast.2020.01.001DetailsFull textCitation
- Narajewski, Michal; Kley-Holsteg, Jens; Ziel, Florian: tsrobprep – an R package for robust preprocessing of time series data.. In: SoftwareX, Vol16 (2021). doi:10.1016/j.softx.2021.100809DetailsCitation
- Kath, Christopher; Ziel, Florian: Conformal Prediction Interval Estimations with an Application to Day-Ahead and Intraday Power Markets. In: International Journal of Forecasting, Vol37 (2021), p. 777-799. doi:10.1016/j.ijforecast.2020.09.006DetailsFull textCitation
- Furtwängler, Christian; Weber, Christoph; Ziel, Florian: Uncertainties in Energy and Electricity Markets: An Introduction. In: Economics of Energy & Environmental Policy (2021). DetailsCitation
- Kulakov, Sergei; Ziel, Florian: The impact of renewable energy forecasts on intraday electricity prices. In: Economics of Energy & Environmental Policy (2021). doi:10.5547/2160-5890.10.1.skulDetailsFull textCitation
- Ziel, Florian: The energy distance for ensemble and scenario reduction. In: Philosophical Transactions A, Vol379 (2021), No 2202. doi:10.1098/rsta.2019.0431DetailsFull textCitation
- Narajewski, Michal; Ziel, Florian: Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories. In: Applied Energy (2020). doi:10.1016/j.apenergy.2020.115801DetailsFull textCitation
- Kley-Holsteg, Jens; Ziel, Florian: Probabilistic Multi-Step-Ahead Short-Term Water Demand Forecasting with Lasso. In: Journal of Water Resources Planning and Management, Vol146 (2020), No 10. doi:10.1061/(ASCE)WR.1943-5452.0001268DetailsFull textCitation
- Muniain, Peru; Ziel, Florian: Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices. In: International Journal of Forecasting, Vol36 (2020), No 4, p. 1193-1210. doi:10.1016/j.ijforecast.2019.11.006DetailsFull textCitation
- Narajewski, Michal; Ziel, Florian: Changes in Electricity Demand Pattern in Europe Due to COVID-19 Shutdowns. In: IAEE Energy Forum (2020), p. 44-47. PDFDetailsFull textCitation
- Ziel, Florian: Load Nowcasting: Predicting Actuals with Limited Data. In: Energies, Vol13 (2020), No 6. doi:10.3390/en13061443PDFDetailsFull textCitation
- Narajewski, Michal; Ziel, Florian: Econometric modelling and forecasting of intraday electricity prices. In: Journal of Commodity Markets, Vol19 (2020), No 4. doi:10.1016/j.jcomm.2019.100107PDFDetailsFull textCitation
- Kulakov, Sergei: X-model: further development and possible modifications. In: Forecasting, Vol2 (2020), p. 20-35. DetailsCitation
- Narajewski, Michal; Ziel, Florian: Estimation and Simulation of the Transaction Arrival Process in Intraday Electricity Markets. In: Energies, Vol12 (2019), No 23. doi:10.3390/en12234518PDFDetailsFull textCitation
- Kulakov, Sergei; Ziel, Florian: Determining fundamental supply and demand curves in a wholesale electricity market. In: arXiv preprint arXiv:1903.11383 (2019). DetailsFull textCitation
- Haben, Stephen; Giasemidis, Georgios; Ziel, Florian; Arora, Siddharth: Short term load forecasting and the effect of temperature at the low voltage level. In: International Journal of Forecasting, Vol35 (2019), p. 1469-1484. DetailsFull textCitation
- Ziel, Florian; Berk, Kevin: Multivariate forecasting evaluation: On sensitive and strictly proper scoring rules. In: arXiv preprint arXiv:1910.07325 (2019). DetailsFull textCitation
- Kath, Christopher: Modeling intraday markets under the new advances of the cross-border intraday project (XBID): Evidence from the German intraday market. In: Energies, Vol12 (2019), p. 4339. DetailsCitation
- Kath, Christopher; Ziel, Florian: The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts. In: Energy Economics, Vol76 (2018), p. 411-423. doi:10.1016/j.eneco.2018.10.005DetailsFull textCitation
- Ziel, Florian; Steinert, Rick: Probabilistic mid- and long-term electricity price forecasting. In: Renewable and Sustainable Energy Reviews, Vol94 (2018), p. 251-266. doi:10.1016/j.rser.2018.05.038DetailsFull textCitation
- Ziel, Florian: Quantile Regression for Qualifying Match of GEFCom2017 Probabilistic Load Forecasting. In: International Journal of Forecasting (2018). doi:10.1016/j.ijforecast.2018.07.004DetailsCitation
- Steinert, Rick; Ziel, Florian: Short-to Mid-term Day-Ahead Electricity Price Forecasting Using Futures. In: The Energy Journal (2018). doi:10.5547/01956574.40.1.rsteDetailsCitation
- Ziel, Florian: Modeling public holidays in load forecasting: a German case study. In: Journal of Modern Power Systems and Clean Energy, Vol6 (2018), No 2, p. 191-207. DetailsFull textCitation
- Ziel, Florian; Weron, Rafal: Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks. In: Energy Economics, Vol70 (2018), p. 396-420. doi:10.1016/j.eneco.2017.12.016DetailsFull textCitation
- Muniain, Peru; Ziel, Florian: Probabilistic forecasting and simulation of electricity prices. In: arXiv preprint arXiv:1810.08418 (2018). DetailsFull textCitation
- Uniejewski, Bartosz; Weron, Rafal; Ziel, Florian: Variance Stabilizing Transformations for Electricity Spot Price Forecasting. In: IEEE Transactions on Power Systems, Vol99 (2017), No 1. doi:10.1109/TPWRS.2017.2734563DetailsFull textCitation
- Yunusov, Timur; Haben, Stephen; Lee, Tamsin; Ziel, Florian; Holderbaum, William; Potter, Ben: Evaluating the effectiveness of storage control in reducing peak demand on low voltage feeders. In: 24th International Conference & Exhibition on Electricity Distribution (CIRED). IET, 2017. doi:10.1049/oap-cired.2017.0626DetailsCitation
- Ziel, Florian: Modeling the impact of wind and solar power forecasting errors on intraday electricity prices. In: 14th International Conference on the European Energy Market (EEM 2017). IEEE, 2017. doi:10.1109/EEM.2017.7981900DetailsFull textCitation
- Ziel, Florian: Forecasting Electricity Spot Prices Using Lasso: On Capturing the Autoregressive Intraday Structure. In: IEEE Transactions on Power Systems, Vol31 (2016), No 6, p. 4977-4987. doi:10.1109/TPWRS.2016.2521545DetailsFull textCitation
- Ziel, Florian; Croonenbroeck, Carsten; Ambach, Daniel: Forecasting wind power - Modeling periodic and non-linear effects under conditional heteroscedasticity. In: Applied Energy, Vol177 (2016), p. 285-297. doi:10.1016/j.apenergy.2016.05.111DetailsFull textCitation
- Ziel, Florian; Steinert, Rick: Electricity price forecasting using sale and purchase curves: The X-Model. In: Energy Economics, Vol59 (2016), p. 435-454. doi:10.1016/j.eneco.2016.08.008DetailsFull textCitation
- Ziel, Florian: Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR-ARCH type processes. In: Computational Statistics & Data Analysis, Vol100 (2016), p. 773-793. doi:10.1016/j.csda.2015.11.016DetailsFull textCitation
- Ziel, Florian; Liu, Bidong: Lasso estimation for GEFCom2014 probabilistic electric load forecasting. In: International Journal of Forecasting, Vol32 (2016), No 3, p. 1029-1037. doi:10.1016/j.ijforecast.2016.01.001DetailsFull textCitation
- Ziel, Florian: Modelling and forecasting electricity load using lasso methods. In: Modern Electric Power Systems (MEPS), 2015. IEEE, 2016, p. 1-6. doi:10.1109/MEPS.2015.7477217DetailsFull textCitation
- Ziel, Florian; Steinert, Rick; Husmann, Sven: Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets. In: Energy Economics, Vol51 (2015), p. 430-444. doi:10.1016/j.eneco.2015.08.005DetailsFull textCitation
- Ziel, Florian: Quasi-maximum Likelihood Estimation of Periodic Autoregressive, Conditionally Heteroscedastic Time Series. In: Steland, A.; Rafajłowicz, E.; Szajowski, K. (Ed.): Stochastic Models, Statistics and Their Applications. Springer Proceedings in Mathematics & Statistics. Springer, 2015, p. 207-214. doi:10.1007/978-3-319-13881-7_23DetailsFull textCitation
- Ziel, Florian; Steinert, Rick; Husmann, Sven: Efficient modeling and forecasting of electricity spot prices. In: Energy Economics, Vol47 (2015), p. 98-111. doi:10.1016/j.eneco.2014.10.012DetailsFull textCitation
Software
CombinePortfolio R-package maintainer